

Arizona State University

Enhancing Metabolic Syndrome Prediction with Hybrid Data Balancing and Counterfactuals

Sanyam Paresh Shah, <u>Abdullah Mamun</u>, Shovito Barua Soumma, Hassan Ghasemzadeh

> Embedded Machine Intelligence Lab Arizona State University

ghasemzadeh.com

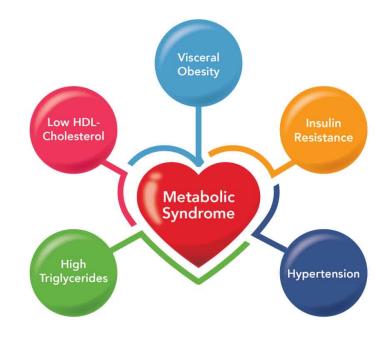
Introduction

What is Metabolic Syndrome?

- Cluster of risk factors: obesity, dyslipidemia, hypertension, insulin resistance
- Global prevalence >25% in adults
- Significantly increases CVD and T2DM risk

Current Challenges

- Class Imbalance in Datasets
- Data Scarcity and missing values
- Methodological inconsistencies
- Limited interpretability of clinical use



Existing Methods for Addressing Class Imbalance

* Strategy I

- Models trained on the original imbalanced dataset.
- No oversampling applied.

* Strategy II

Random oversampling applied only to training set.

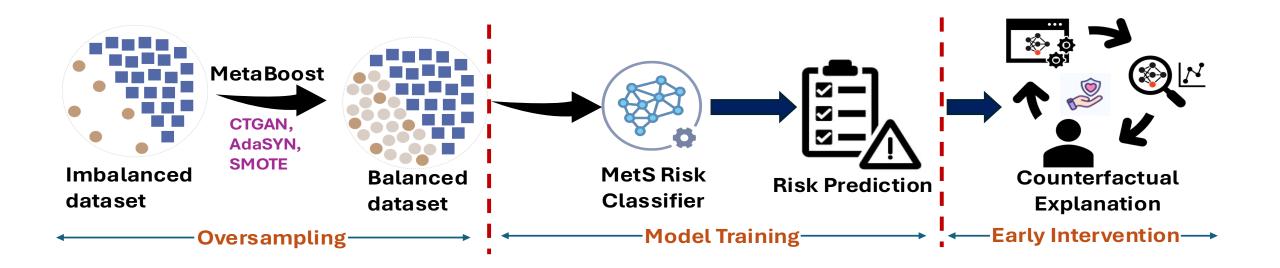
* Strategy III

- Balance data with help of synthetic data
- e.g., SMOTE, ADASYN
- Recent methods based on generative models: BIDC2, AIMEN

 How can hybrid ML approaches with advanced data balancing and counterfactual analysis enhance MetS prediction and clinical interpretability?

Our Proposed System: MetaBoost

Advanced Techniques Explored SMOTE, ADASYN, CTGAN used individually and in hybrid forms.



Dataset and Preprocessing

NHANES Dataset

2,401 individuals with 13 clinical features

- Features: age, sex, waist circumference, BMI, blood glucose, HDL, triglycerides, etc.
- Target: MetS presence/absence

* Preprocessing

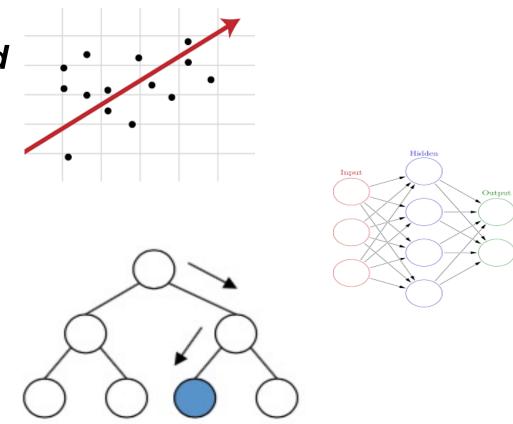
- Removed marital status (8.66% missing values)
- Categorical encoding: Sex (Male=0, Female=1), Race (White=0 to Other=5)
- Mean imputation for Income, WaistCirc, BMI
- 67%/33% train/test split with balanced test set

Model Evaluation and Performance

- * Machine Learning Models Tested
 - XGBoost Classifier
 - Random Forest
 - TabNet Logistic
 - Regression
 - Multi-Layer Perceptron (MLP)
 - Decision Tree

Evaluation Metrics

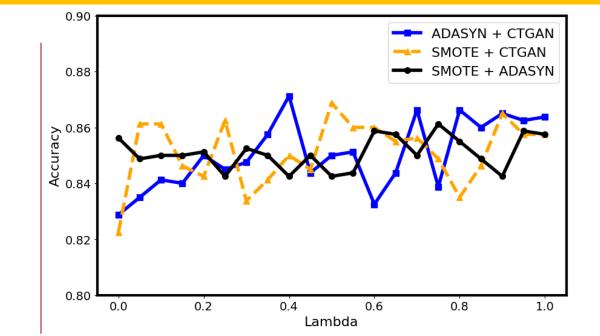
Accuracy, Precision, Recall, F1 Score



Performance Comparison

Across Different ROS Strategies

		RF	DT	XGB	LR	MLP	TNet
	Acc	0.804	0.815	0.843	0.744	0.545	0.673
	Pre	0.931	0.879	0.936	0.920	0.914	0.675
Without ROS	Rec	0.656	0.732	0.736	0.534	0.270	0.920
	F1	0.770	0.799	0.824	0.676	0.417	0.779
	Acc	0.827	0.815	0.859	0.798	0.629	0.811
ROS on	Pre	0.917	0.871	0.913	0.775	0.579	0.769
Training Set	Rec	0.719	0.741	0.793	0.838	0.945	0.890
c	F1	0.806	0.801	0.849	0.805	0.718	0.825



Results of MetaBoost (with XGBoost backbone)

Method	Weights	Accuracy	Precision	Recall	F1
SMOTE	-	0.868	0.889	0.840	0.864
ADASYN	-	0.855	0.872	0.833	0.852
CTGAN	-	0.866	0.913	0.810	0.858
ADASYN+CTGAN	(0.4, 0.6)	0.871	0.890	0.848	0.868
SMOTE+CTGAN	(0.5, 0.5)	0.869	0.891	0.840	0.865
SMOTE+ADASYN	(0.75, 0.25)	0.861	0.877	0.840	0.858
SMOTE+CTGAN+ADASYN	(0.05,0.55,0.4)	0.869	0.889	0.843	0.865

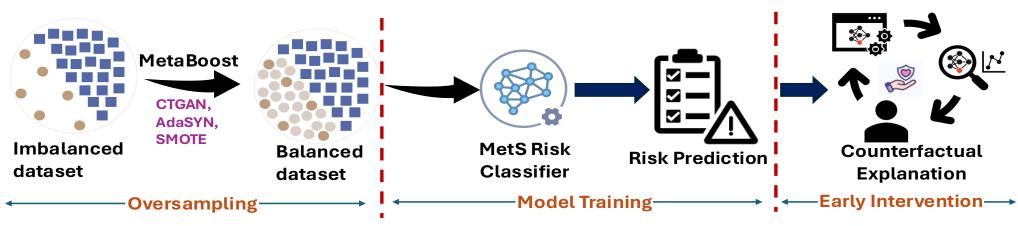
MetaBoost

Individual techniques

- SMOTE: Synthetic Minority Oversampling Technique
- ADASYN: Adaptive Synthetic Sampling (focuses on decision boundary)
- CTGAN: Conditional Tabular Generative Adversarial Networks

Hybrid Approach

- Weighted combination of synthetic data from multiple methods
- Systematic weight optimization (0.05 increments)
- Two-method combinations: 20 different weight combinations
- Three-method combination (SMOTE + ADASYN + CTGAN): 235 different weight combinations



Counterfactual Analysis

Nearest Instance Counterfactual Explanations (NICE) algorithm

✤ L1 norm for feature-wise distance measurement

✤ Data Analysis

 Normalized average distance, standard deviation, average feature changes, and percentage of altered features were computed.

Visualization

- A Random Forest Classifier was applied to visualize decision boundaries between original and counterfactual instances.
- PCA-transformed and standardized data were used for visualization.

Counterfactual Analysis

Key Findings

- Average normalized distance: 1.489 (±1.120)
- Average features modified: 2.054 (±1.070)
- Only 17.1% of features need changes for class flip

Clinical Interpretability

Minimal feature modifications needed for risk category changes

Metric	Value
Average Normalized Distance	1.489
Standard Deviation of Normalized Distance	1.120
Average Sparsity	2.054
Standard Deviation of Sparsity	1.070
Percentage of Features Changed	17.1%

Counterfactual Analysis

Most Frequently Modified Features

- Blood Glucose: 50.3% (most critical)
- Triglycerides: 46.7% (second most important)
- Waist Circumference: 42.9%
- **HDL**: 33.7%

* Rarely Modified Features

- Demographics: Sex (0.1%), Race (0%)
- **Medical**: Albuminuria (0.1%)
- Socioeconomic: Income (1.7%)

Clinical Significance

Model focuses on **modifiable metabolic factors** rather than fixed demographic characteristics

Feature	Change Rate (%)
BloodGlucose	50.3%
Triglycerides	46.7%
WaistCirc	42.9%
HDL	33.7%
BMI	9.6%
Age	8.9%
UrAlbCr	7.8%
UricAcid	3.5%
Income	1.7%
Sex	0.1%
Albuminuria	0.1%
Race	0.0%

PCA Analysis

PCA-Reduced Space Analysis

- Original instances clustered in central region (-2 to 2)
- Counterfactual instances show wider dispersion
- Complex, non-linear decision boundaries revealed

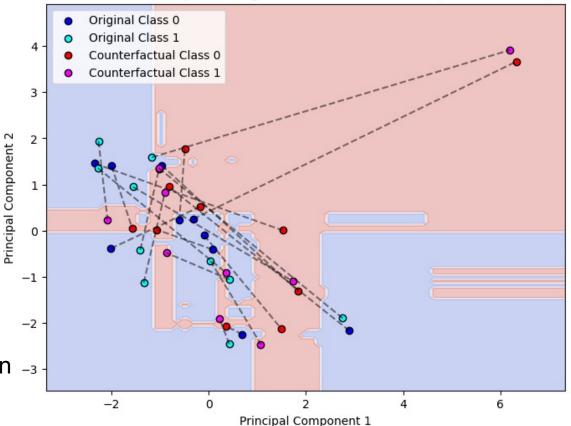
Random Forest Classifier Patterns

- Multiple disjoint decision regions
- Variable transition lengths between classes
- Local pattern capture capability demonstrated

* Clinical Translation

Different patients require different degrees of intervention -3 based on their position in feature space

Decision Boundary with Original-Counterfactual Pairs (Balanced Data)



Summary

* Key Contributions

- MetaBoost framework: Novel hybrid data balancing approach (1.87% accuracy improvement over individual methods)
- **Performance achievement**: 87.1% accuracy, 0.868 F1-score
- **Clinical interpretability**: Counterfactual analysis for actionable insights
- Evidence-based targeting: Blood glucose and triglycerides as primary intervention points

* Clinical Significance

- Addresses critical healthcare challenges: class imbalance, data scarcity
- Provides interpretable ML models for clinical decision-making
- Enables personalized intervention strategies

✤ Impact

 Advances methodological rigor in MetS prediction while providing actionable clinical insights for mitigating global metabolic syndrome burden

Arizona State University

Thank You!

Full-Text PDF

https://ghasemzadeh.com/ hassan.ghasemzadeh@asu.edu