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Motivation

« Suppose, you have a number of unique
labels for a dataset.

« But the amount of labeled data in the dataset

is very low. (e.g. <5%)

* We can use Semi-supervised learning to
label the unlabeled data.

« But what about the unseen labels? E.g.
eating in this case.
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Open-World SSL
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Figure 1: In the open-world SSL, the unlabeled dataset may contain classes that have never been
encountered in the labeled set. Given unlabeled test set, the model needs to either assign instances to
one of the classes previously seen in the labeled set, or form a novel class and assign instances to it.



Related Work: Novel class discovery

« The task is to cluster unlabeled dataset consisting of similar, but completely disjoint, classes
than those present in the labeled dataset which is utilized to learn better representation for
clustering.

« These methods assume that at the test time all the classes are novel.
« While these methods are able to discover novel classes, they do not recognize the

seen/known classes. For_the following figure, it will consider elephant, octopus, and cheetah
as novel classes too.
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Figure 1: In the open-world SSL, the unlabeled dataset may contain classes that have never been
encountered in the labeled set. Given unlabeled test set, the model needs to either assign instances to
one of the classes previously seen in the labeled set, or form a novel class and assign instances to it.
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Related Work: Traditional Semi-
supervised learning

« Assumes closed-world setting in which labeled
and unlabeled data come from the same set of
classes.

It will assume the unlabeled data can only belong
to the classes seen in the labeled data.

* So, eating cannot be discovered in this method
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Related Work: Robust SSL

Robust SSL methods relax the SSL assumption by
assuming that instances from novel classes may
appear in the unlabeled test set.

The goal in robust SSL is to reject instances from
novel classes which are treated as
out-of-distribution instances.

* So, eating or any activities out of distribution will be
rejected
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Related Work: Robust SSL

Open-world SSL can
» C(Classify the seen classes,
» Discover novel classes, &

Table 1: Relationship between our novel open-world SSL and other machine learning settings.

Setting Seen classes  Novel classes Prior knowledge
Novel class discovery Not present Discover None

SSL Classify Not present None
Robust SSL Classify Reject None
Generalized zero-shot learning Classify Discover Class attributes
Open-set recognition Classify Reject None
Open-world recognition Classify Discover Human-in-the-loop
Open-world SSL Classify Discover None
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ORCA
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Figure 2: Overview of ORCA framework. ORCA utilizes additional classification heads for novel
classes. Objective function in ORCA consists of (i) supervised objective with uncertainty adaptive
margin, (ii) pairwise objective that generates pseudo-labels, and (iii) regularization term.



ORCA

Given labeled instances X; = {z; € RV ti; and unlabeled instances &, = {z; € RN e
ORCA first applies the embedding function fp : RY — RP to obtain the feature representations
Z; ={z € RP}, and Z, = {z; € RP}™, for labeled and unlabeled data, respectively. Here,

z; = fo(x;) forevery instance z; € A3 UA,,. On top of the backbone network, we add a classification

head consisting of a single linear layer parameterized by a weight matrix W : RP — RICYCul,

and followed by a softmax layer. Note that the number of classification heads is set to the number
of previously seen classes and the expected number of novel classes. So, first |C;| heads classify
instances to one of the previously seen classes, while the remaining heads assign instances to novel
classes. The final class/cluster prediction is calculated as ¢; = argmax(W7T - 2;) € R. If ¢; € C,
then z; belongs to novel classes. The number of novel classes |Cy,| can be known and given as an
input to the algorithm which is a typical assumption of clustering and novel class discovery methods.
However, if the number of novel classes is not known ahead of time, we can initialize ORCA with a

large number of prediction heads/novel classes. The ORCA objective function then infers the number
of classes by not assigning any instances to unneeded prediction heads so these heads never activate.



ORCA

However, using standard cross-entropy loss on labeled data creates an imbalance
problem between the seen and novel classes, i.e., the gradient is updated for seen

classes C_s, but not for novel classes C_n

To overcome the issue an uncertainty adaptive margin mechanism and propose to
normalize the logits as we describe next

10



ORCA

The objective function in ORCA combines three components (Figure 2) (i) supervised objective with

uncertainty adaptive margin, (ii) pairwise objective, and (zii) regularization term: 0
L=Ls+-mlp+1mpR, (1)
Formula
. e’
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Specifically, the supervised objective with uncertainty adaptive margin mechanism is defined as:
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ORCA

The objective function in ORCA combines three components (Figure 2) (i) supervised objective with
uncertainty adaptive margin, (ii) pairwise objective, and (zii) regularization term: 0

L=Ls+mLp+ 2R, (1)

Therefore, we only generate pseudo-labels from the most confident positive pairs for each instance
within the mini-batch. For feature representations Z; U Z,, in a mini-batch, we denote its closest set
as Z] U Z,,. Note that Z] is always correct since it is generated using the ground-truth labels. The
pairwise objective in ORCA is defined as a modified form of the binary cross-entropy loss (BCE):

1
Ly = —— Z— log(o(WT - 2),a(WT - 21)). 5)
(ZZUZ:,EZZ’UZ;)

Here, o denotes the softmax function which assigns instances to one of the seen or novel classes.



ORCA

The objective function in ORCA combines three components (Figure 2) (i) supervised objective with
uncertainty adaptive margin, (ii) pairwise objective, and (zii) regularization term: 0

L=Ls+mLp+ 2R, (1)

3.5 REGULARIZATION TERM

Finally, the regularization term avoids a trivial solution of assigning all instances to the same class. In
early stages of the training, the network could degenerate to a trivial solution in which all instances
are assigned to a single class, i.e., |C, | = 1. We discourage this solution by introducing a Kullback-
Leibler (KL) divergence term that regularizes Pr(y|x € D; U D,,) to be close to a prior probability
distribution P of labels y:

R=KL(—— 3 oW" 2)|PW), ©
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Datasets

*CIFAR-10,
*CIFAR-100 (
*ImageNet (

J )J
* A highly unbalanced single-cell Mouse Ageing

Cell Atlas dataset from biology
domain ( , ).



Results

Table 2: Mean accuracy computed over three runs. Asterisk (x) denotes that the original method can
not recognize seen classes (and we had to extend it). Dagger (7) denotes the original method can not
detect novel classes (and we had to extend it). SimCLR and FixMatch are not applicable (NA) to the

single-cell dataset. Improvement is computed as a relative improvement over the best baseline.

CIFAR-10 CIFAR-100 ImageNet-100 Single-cell
Method Seen Novel All Seen Novel All Seen Novel All Seen Novel All
TFixMatch ~ 71.5 504" 495 396 235" 203 658 367" 349 NA NA NA
DS3L 77.6 453" 402 551 2377 240 712 3257 308 762 2977 26.4
TCGDL 723 4467 397 493 2257 235 673 3387 319 741 3047 256
iIDIC 53.9% 395 383 313*% 229 183 256% 20.8 213 296%* 253 278
*RankStats  86.6% 81.0 829 36.4* 284 23.1 473* 287 403 423* 319 386
*SimCLR 58.3*% 63.4 517 28.6% 21.1 223 395 357 369 NA NA NA
ORCA-ZM 87.6 866 869 552 320 348 804 437 551 895 351 476
ORCA-FNM 88.0 882 88.1 582 400 443 730 662 689 897 486 58.7
ORCA 882 904 89.7 669 43.0 481 891 721 778 899 652 729
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Datasets

60 ORCA-ZM - |abeled VY G0 e

60
— ' - ORCA-FNM | | | ynlabeled ,/‘/VMJV
R —— ORCA & 50|
£ 40 ] 3 40 R R R T ISR e
£ 30 S 30 agesd
O (&) y
5 20 < 20(-% ORCA-ZM
10 Lo 10 | | ORCA-FNM —— seen
A |
0 ) O ORCA nove
0 25 50 5 100 125 150 175 200 0 25 50 Fis 100 125 150 175 200
Epoch Epoch

Figure 3: Effect of the uncertainty adaptive margin on the estimated uncertainty (left) and accuracy
(right) during training on the CIFAR-100 dataset. At epoch 140, we decay learning rate.
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