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Motivation
• MLPs are used frequently in formulating theory but their use in the modern 

settings are limited

• We want to explore if the MLPs can perform as well as CNNs or Transformers in 
vision tasks with proper scaling

Research question:
"Do MLPs reflect the empirical advances exhibited by practical models?”

Motivated by the recent narrative:
”At large scales of compute, having less inductive bias is beneficial for performance” 

(my intuition: what would you do if you had unlimited compute?)

Study designed considering the hypothesis:
”Lack of inductive bias can be compensated by scaling compute.”



Background – Inductive Bias

“The inductive bias (also known as learning bias) of a 
learning algorithm is the set of 
assumptions that the learner uses to predict outputs of 
given inputs that it has not encountered.” (Wikipedia)

For example:
- The design/architecture of a specific CNN/RNN 
introduces a bias to the model for specific type of data 
processing/outcomes

- Goal is to use the right type of inductive bias to make 
learning easy for the specific task.



Background – Inductive bias of MLPs

- MLPs are not free of inductive biases. They have a 
hierarchical feature structure.

- But they do not have any vision-specific inductive bias. 

- E.g., they do not have properties to use locality 
properties. A flattened vector of image fed to an MLP is 
nothing but a collection of numbers, and invariant to 
any fixed permutation of the pixels.



Background – MLP and MLP mixers

- MLP mixers work won patches
- MLPs work on pixels



Contributions
- MLPs are trained in modern settings for the first time.
- MLPs with proper care are comparable to the modern architectures.
- Inductive bias is not crucial at large scales.



Observations (spoiler alert)
Key observations:

• With pretraining, MLPs can achieve accuracies close to the modern 
architectures on select datasets

• Size of dataset is more important than the size of the network if you are 
constrained by compute

• Augmentation may be more important/effective than pretraining

I also have some of my own opinion on this paper.



Datasets
ImageNet 1K: ImageNet with 1,000 classes and ~1.2 million images
ImageNet 21k: ImageNet with 21,841 classes and ~14 million images
Tiny ImageNet: 200 classes, 100 thousand images
ImageNet ReaL: 

CIFAR10: 10 classes, 60 thousand images
CIFAR100: 100 classes, 60 thousand images

STL10:  10 classes: 5000 training images, 



Models
Standard MLP (S-MLP)

Bottleneck MLP (B-MLP)
(has skip connections)

LION optimizer is used in the models

The default S-MLP has depth 6 and 
width 1024

while the default  B-MLP has depth 
6, width 1024 and an expansion 
factor of 4. 



Models

First a Linear layer
Then unwraps a number of blocks
Each block has two linear layers and a layer 
normalization.



Background – LION vs Adam



Background – LION vs 
Adam



Experimental results – training from scratch
S-MLP = Standard MLP
B-MLP = Inverted Bottleneck MLP

E = Epochs
DA = Data augmentation 



Experimental results – fine tuned models

S-MLP = Standard MLP
B-MLP = Inverted Bottleneck MLP

TTA = Test time augmentation

All models on this table are 
Bottleneck MLPs.

Depth = 6 or 12
Width = 1024
Expansion factor = 4 (default)



Discussion – Test time augmentation and 
Multiclass labels

With TTA, performance improves.

With Multiclass labels, 
performance improves.

It suggests that MLPs may be 
weak at localizing the object of 
interest (weak inductive bias). 
Hence, scaling is essential.



Which direction to scale? Data or Model?
Empirical observations suggest that for MLPs, optimal strategy is to invest more compute into dataset size.



Experimental results – Optimal model and data size

# Examples can be 
increased comparatively 
faster than the model size 
given the number of 
compute.

Bottleneck MLPs

B_<depth>_Wi_<width>



My opinion regarding this paper
Strengths:
- Informative background discussion
- Comparison of optimal dataset size vs optimal model size for 

fixed compute  
- Nicely explained the effect of pretraining and role of 

augmentation
- Using test time augmentation to explain the model’s limitations

Weaknesses:
- Poor design of the figures.
- Unclear abbreviations on figures and tables. In my opinion, 

figures and tables need to be self-sufficient in terms of 
describing uncommon abbreviations/jargons.

What if I was a reviewer?
- I would recommend borderline and change to acceptance upon 
addressing the weaknesses.

What were the real reviews?

4 reviewers
1 strong accept (rating 8)
2 weak accepts (rating 6)
1 borderline reject (rating 4)
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