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Figure 1: Test error on CIFARI100 as a function of PFLOPS.



Motivation

 MLPs are used frequently in formulating theory but their use in the modern
settings are limited

 We want to explore if the MLPs can perform as well as CNNs or Transformers in
vision tasks with proper scaling

Research question:

"Do MLPs reflect the empirical advances exhibited by practical models?” — L
Motivated by the recent narrative: ®
"At large scales of compute, having less inductive bias is beneficial for performance”
(my intuition: what would you do if you had unlimited compute?) >@
=' §
Study designed considering the hypothesis: 0150 0S5
dID A,

”Lack of inductive bias can be compensated by scaling compute.” | ; ; l



Background — Inductive Bias

“The inductive bias (also known as learning bias) of a
learning algorithm is the set of

assumptions that the learner uses to predict outputs of
given inputs that it has not encountered.” (Wikipedia)

For example:

- The design/architecture of a specific CNN/RNN
introduces a bias to the model for specific type of data
processing/outcomes

- Goal is to use the right type of inductive bias to make
learning easy for the specific task.




Background — Inductive bias of MLPs

- MLPs are not free of inductive biases. They have a
hierarchical feature structure.

- But they do not have any vision-specific inductive bias.

- E.g., they do not have properties to use locality
properties. A flattened vector of image fed to an MLP is
nothing but a collection of numbers, and invariant to
any fixed permutation of the pixels.
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Figure 2: Different architectures process images differently. Convolutions directly operate on the
image, ViTs and MLP-Mixers work with patches while the MLP takes the flattened image as input.



Background — MLP and MLP mixers

- MLP mixers work won patches
- MLPs work on pixels
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Figure 3: A simplified depiction of the differences between an MLP-Mixer and an MLP.



Contributions

- MLPs are trained in modern settings for the first time.
- MLPs with proper care are comparable to the modern architectures.
- Inductive bias is not crucial at large scales.

» We fill the gap between theory and practice, providing the first results for MLPs trained in
modern settings.

* We show that MLPs mostly behave comparably to their modern counterparts, making them
a good proxy for theory. We observe however that the roles of regularization and implicit
bias of SGD significantly differ and theory hence needs to adapt.

* We provide further evidence that inductive bias is not crucial at large scales, showing 0150 0S5
that even "bad" architectures like MLPs can achieve strong downstream performance. We

however identify a shift in compute-optimality, showing that optimal MLPs invest their
compute significantly more into dataset size compared to model size. 7 C




Observations (spoiler alert)

Key observations:

e With pretraining, MLPs can achieve accuracies close to the modern
architectures on select datasets

» Size of dataset is more important than the size of the network if you are
constrained by compute

« Augmentation may be more important/effective than pretraining

| also have some of my own opinion on this paper.




Datasets

ImageNet 1K: ImageNet with 1,000 classes and ~1.2 million images
ImageNet 21k: ImageNet with 21,841 classes and ~14 million images
Tiny ImageNet: 200 classes, 100 thousand images

ImageNet Real.:

CIFAR10: 10 classes, 60 thousand images
CIFAR100: 100 classes, 60 thousand images

STL10: 10 classes: 5000 training images,
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Models

Standard MLP (S-MLP)

Bottleneck MLP (B-MLP)
(has skip connections)

LION optimizer is used in the models

The default S-MLP has depth 6 and
width 1024

while the default B-MLP has depth
6, width 1024 and an expansion
factor of 4.

Standard MLP. As a first starting point, we investigate simple MLPs with ReLLU activations and
isotropic design, i.e. except for the first, every layer has the same width m € N. In order to avoid
training nstabilities we further enhance the standard MLP with layer normalizations (Ba et al., 2016)
placed after the activations. We thus compose several blocks of the form

Block(z) = o (W LN(2))

Inverted Bottleneck MLP. Inspired by Lin et al. (2015); Tolstikhin et al. (2021) we add a bottleneck
structure to an MLP block as well as skip connections as follows:

Block(z) = z + W€ (W*°LN (2))

where W€ € RF¥™X™ expands the dimension to km for k € N and W () € R™>Fm collapses it
back to width m. For most experiments we set k& = 4. While the additions of skip connections and
bottleneck layers to the architecture arguably add some amount of inductive bias, we believe that

in comparison to modern architectures such enhancements remain negligible. We will denote this
variant by B-MLP.

B{X}x{Y}_IB_{NORM}_{ACT} |-= NORMPM W, € R%*4 | ACT s € Ri<4dy) acT [plpy, e pid=d
(IB: Inverted Bottleneck)
Y blocks

| — /

X linear layers
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Models

class StandardMLP(nn.Module):
def __init__ (self, dim_in, dim_out, widths):

super(StandardMLP, self).__init_ ()

self.dim_in = dim_in

self.dim_out = dim_out

self.widths = widths

self.linear_in = nn.Linear(self.dim_in, self.widths[0])

self.linear_out = nn.Linear(self.widths[-1], self.dim_out)

self.layers = []

self.layer_norms = []

for 1 in range(len(self.widths) - 1):
self.layers.append(nn.Linear(self.widths[i], self.widths[i + 1]))
self.layer_norms.append(nn.LayerNorm(widths[i + 1]))

self.layers = nn.ModuleList(self.layers)
self.layernorms = nn.ModuleList(self.layer_norms)

def forward(self, x):
z = self.linear_in(x)
for layer, norm in zip(self.layers, self.layer_norms):

z = norm(z)
z = nn.GELU() (2)
z = layer(z)

out = self.linear_out(z)

return out

" )

odef

3 nn.Flatten(start_dim=1,

D Inverted Bottleneck MLP Code

We provide PyTorch-style pseudo-code for the inverted bottleneck MLP to highlight its simplicity.

| from torch import nn

iclass Block(nn.Module):
def __init__(self, dim,
super () .__init__()
self.fn = nn.Sequential(
nn.Linear (dim, int(expansion_factor * dim)),
nn.GELU() ,
nn.Dropout (dropout),
nn.Linear (int (expansion_factor * dim), dim),
nn.Dropout (dropout)

expansion_factor=4, dropout=0.):

self.ln = nn.LayerNorm(dim)

def forward(self, x):

16 return x + self.fn(self.ln(x))

MLP (image_size, channels, dim, num_classes,
expansion_factor=4, dropout=0.):

return nn.Sequential(

depth,

end_dim=-1),
nn.Linear (image_size * image_size * channels,
*[Block(dim, expansion_factor, dropout) for

dim),
in range (depth)

1,

nn.Linear (dim, num_classes)

)

First a Linear layer

Then unwraps a number of blocks

Each block has two linear layers and a layer
normalization.



Background — LION vs Adam

Table 1: Accuracy of BASIC-L [72] on ImageNet and several robustness benchmarks. We apply Lion
Symbolic Discovery Of Optimization Algorithms to both vision tower pre-training and vision-language contrastive training stages. The previous SOTA

results on zero-shot and fine-tuning ImageNet accuracy are 86.3% and 91.0% [100].

Otz Zero-shot Fine-tune
P ImageNet V2 A R  Sketch ObjectNet | ImageNet
Adafactor | 857  80.6 856 957 76.1 82.3 ’ 90.9
Xiangning Chen! 2§ * Chen Liang' $ Da Huang! Esteban Real' Lion g0 812 Res Jow J12 inaed 2
Kaiyuan Wang' Hieu Pham' Xuanyi Dong' Thang Luong'
Cho-Jui Hsieh? Yifeng Lu' Quoc V. Le!
I 89 v
§Equal & Core Contribution %S \ = Lion (ours)
Y 88 \
< = 3 5.5
+ 87 ~J3X speedup
'Google 2UCLA = D5
86 '
g —&— Lion (ours)
=8 ~¥— AdamW o
Ab ~2.3x speedup
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We ]prr_esen:j a method to f_ornllulat:: algc;]rithl? d(ijscovery a? progra;;n se-ar.ch. a\;:ld Figure 1: Left: ImageNet fine-tuning accuracy vs. pre-
apply it to discover optimization algorithms for deep neural network training. We . . 3 PRI
leverage efficient search techniques to explore an infinite and sparse program space. tralnlng.cost.of ViT models onQJFT 300M. ng,ht' FID
To bridge the large generalization gap between proxy and target tasks, we also of the diffusion model on 256 image generation. We

introduce program selection and simplification strategies. Our method discovers

use DDPM for 1K steps w/o guidance to decode image.
a simple and effective optimization algorithm, Lion (EvoLved Sign Momentum).

As a reference, the FID of ADM is 10.94 [24].



Background — LION vs

Adam

Program 2: An example training loop,
where the optimization algorithm that
we are searching for is encoded within
the train function. The main inputs
are the weight (w), gradient (g) and
learning rate schedule (1r). The main
output is the update to the weight. v1
and v2 are two additional variables for
collecting historical information.
w = weight_initialize()
vl = zero_initialize()
v2 = zero_initialize()
for i in range(num_train_steps):
1lr = learning_rate_schedule(i)
g = compute_gradient(w, get_batch(i))
update, vi, v2 = train(w, g, vi, v2, 1lr)
w = w - update

TOW N

Program 3:

Program 1:

derived from Program

Discovered optimizer Lion.
B1 = 09 and 5, = 0.

99 by default are
It only tracks

momentum and uses the sign operation to
compute the update. The two gray lines
compute the standard decoupled weight
decay, where A is the strength.

def train(weight, gradient, momentum, 1r):
update = interp(gradient, momentum, [31)

update = sign(update)

momentum = 1nterp(grad1ent momentum, [33)

y = nl—’l}:lT *

update = update * 1r
return update, momentum

Initial pro-

A

e + weight_decay

Program 4: Discovered

Al

gorithm 1: Adum, our proposed algorithm for stochastic optimization. See section 2 for details,

and for a slightly more efficient (but less clear) order of computation. g7 indicates the elementwise
square g; ® g¢;. Good default settings for the tested machine learning problems are o = 0.001,

B

= 0.9, 3, = 0.999 and e = 10~5. All operations on vectors are element-wise. With 3! and 3}

we denote 31 and [32 to the power ¢.

Require: «o: Stepsize

Require: 3,,3; €

[0,1): Exponential decay rates for the moment estimates

Require: f(6): Stochastic objective function with parameters
Require: 6y: Initial parameter vector

mg < 0 (Initialize 1% moment vector)

vo + 0 (Initialize 2™ moment vector)

t < 0 (Initialize timestep)

while 6; not converged do
t—t+1
gt < Vo fi(0:—1) (Get gradients w.r.t. stochastic objective at timestep ¢)
my < By -my_1 + (1 — 1) - g; (Update biased first moment estimate)
vg < B -vi_1 + (1 — B2) - g? (Update biased second raw moment estimate)
my < mq/(1 — B) (Compute bias-corrected first moment estimate)
vy vy /(1 — BE) (Compute bias-corrected second raw moment estimate)
0y < 0;—1 — o - iy /(v/0r + €) (Update parameters)

end while

return 6, (Resulting parameters)

gram (AdamW). The bias
correction and e are omit-
ted for simplicity.

def train(w, g, m, v, 1r):
g2 = square(g)
m = interp(g, m, 0.9)
v = interp(g2, v, 0.999)
sqrt_v = sqrt(v)
update = m / sqrt_v
wd = w % 0.01
update = update + wd
1r = 1r * 0.001
update = update * 1r
return update, m, v

program after search, se-
lection and removing re-
dundancies in the raw Pro-
gram|[8](Appendix). Some
variables are renamed for
clarity.

def train(w, g, m, v, 1r):
g = clip(g, 1r)
g = arcsin(g)
m = interp(g, v, 0.899)
m2 =m * m
v = interp(g, m, 1.109)
abs_m = sqrt(m2)
update = m / abs_m
wd = w * 0.4602
update = update + wd
1r = 1r * 0.0002
m = cosh(update)
update = update * 1r
return update, m, v

Algorithm 2 _ and | A

1: given a; = 0.001, 3; = 0.9, 3, = 0.999,e =107 %, w € R

2: initialize time step £ +— 0, parameter vector x¢—o € R" first moment vector m;—o < 0, second
moment vector vi—p < 0, schedule multiplier 7:—p € R

3: repeat

4 t+t+1

5. Vfi(xi—1) « SelectBatch(x;_1) > select batch and return the corresponding gradient

6: g < Vfi(xi-1)

70 my — Bumy_y + (1 — By)g, > here and below all operations are element-wise

B: w4 Bove_1+ (1 — Br)g?

9: lﬁt(—mt/(l—.ﬁi)

10: f’t (—Vt/(l _.B;)

11: 1 + SetScheduleMultiplier(t)
12: Xt & X1 — Nt (Q‘tﬁlt/(\/f’_¢+€)
13: until stopping criterion is met

14: return optimized parameters x;

> here, 31 is taken to the power of ¢
> here, 35 is taken to the power of ¢
> can be fixed, decay, be used for warm restarts

)




Experimental results — training from scratch

S-MLP = Standard MLP CIFAR10 CIFAR100 TINYIMAGENET IMAGENET

B-MLP = Inverted Bottleneck MLP S-MLP (@100 E) 54.2 28.8 8.5 9.2
S-MLP + DA (@ 1000 E) 68.9 43.3 25.2 24.3

E = Epochs S-MLP + DA (@ 5000 E) 72.3 44.5 27.3 26.8

DA = Data augmentation B-MLP (@ 100 E) 58.1 30.5 8.9 8.7
B-MLP + DA (@1000 E) 70.1 48.3 27.2 28.7
B-MLP + DA (@5000 E) 75.4 50.4 31.2 31.7
RESNETI8” + DA 93.2 75.6 68.9 69.7

Table 1: Test accuracies (in %) without any pre-training. The S-MLP has depth 6 and width 1024
while the B-MLP has depth 6, width 1024 and an expansion factor of 4.



Experimental results — fine tuned models

S-MLP = Standard MLP CIFAR10 CIFAR100 STL10 TINY-IN IN REAL
B-MLP = Inverted Bottleneck MLP B-6/Wi-1024 69.9+0.1 43.0+£0.4 51.5+0.1  47.1+0.1  15.2+0.2  20.3+0.2
B-6/Wi-1024 + DA 91.5+0.02 76.4+0.2 85.0+0.2  62.7+0.1 38.7+0.1  47.0+0.15

TTA = Test time augmentation B-12/Wi-1024 + DA 94.240.05 80.0+0.05 89.9+0.1  69.9+0.4 43.3+0.06  48.6£0.2

All models on this table are B-12/Wi-1024 + DA + TTA 95.5+0.05 82.6+0.2 92.240.05 73.1+0.5 51.5+0.1 57.9+0.1

Bottleneck MLPs.
Table 2: Fine-tuning Top-1 accuracies (in %) when pretrained on ImageNet21k. Accuracies are

Depth = 6 or 12 averaged over 3 runs. For readability, we abbreviate ImageNet as IN.
Width = 1024
Expa nsion factor = 4 (default) Role of augmentations. Data augmentation is very pronounced for MLPs, providing indirect

inductive bias to the model. Remarkably, a model pre-trained on 12 million examples without data
augmentation shows inferior performance on CIFAR10 compared to a network trained from scratch

with augmentations turned on. This emphasizes that augmentations go beyond merely leading to a
bigger dataset but provide the model with useful invariances. We investigate the learnt weights in



With TTA, performance improves.

With Multiclass labels,
performance improves.

It suggests that MLPs may be
weak at localizing the object of
interest (weak inductive bias).
Hence, scaling is essential.

Discussion — Test time augmentation and
Multiclass labels

Test-Time Augmentations. For ImageNetlk we further notice that objects tend to not be centered,
in contrast to datasets like CIFAR10. We suspect that this might lead to the comparatively weaker
performance. To test this, we leverage test-time augmentations (TTA). As introduced by Krizhevsky
et al. (2012), for each test image, we produce a fixed number of 100 random crops and use the
averaged logits for prediction. We observe significant improvements across all datasets, especially for
ImageNet we obtain an increase of roughly 8%. This indeed indicates that MLPs struggle to localize
the object of interest, especially for the more complicated ImageNetlk task. Using a large number of
crops alleviates this problem to some degree. This also explains why the gains on tasks like CIFAR10
are smaller as the objects there usually are perfectly centered.

Real accuary. As observed in (Beyer et al., 2020), the ImageNet labels do not capture that a single
image might contain multiple objects of distinct classes. ImageNet accuracy can thus be misleading
in the sense that model classes such as convolutional networks might have implicitly adapted to the
particular labeling strategy due to the repeated benchmarking on the same validation set. MLPs most
likely lack such an implicit adaptation as this work is to our knowledge the first to evaluate them
on ImageNetlk. To address this, Beyer et al. (2020) introduced a novel set of validation labels that
better capture the multi-label nature, where a prediction is deemed correct if it matches one of the
categories present in the image. We observe further very significant improvements of ~ 7% when
employing ImageNet Real..

Overall, these results underline that a bad inductive bias as exhibited by an MLP can indeed be
overcome if subjected to enough scale. For theory, the results are double-edged; while MLPs prove to
be a good proxy to understand transfer learning, data augmentation proves to be a crucial component.
Also test-time augmentations significantly boost performance. Both these components on the other
hand remain rather understudied in theoretical works.



Which direction to scale? Data or Model?

Empirical observations suggest that for MLPs, optimal strategy is to invest more compute into dataset size.

Parameters or examples. Given a fixed level of compute C', what is the optimal way to allocate it
to parameter count P” and number of examples N? To be more comparable to previous work, we
assume a fixed training time 7" = 50. To answer this question, we follow the approach outlined in
Hoffmann et al. (2022) and plot the optimal compute models identified in Fig. 1 both against model
size P and number of examples N and visualize the results in Fig. 7. We empirically observe that
the optimal parameter count P*(C') and dataset size N*(C') as a function of compute C' exhibit
power-law behaviour of the approximate form

P* (C) x C0.35 N*(C) o C0.65

While for transformers, the number of examples (or tokens) N and parameters P are scaled equally
(Hoffmann et al., 2022) (i.e. ap = an =~ 0.5), in contrast we observe that the optimal strategy for
MLPs invests significantly more compute into dataset size /N. This is further evidence for the weaker
inductive bias present in MLPs, which needs more examples in order to be compensated for.



Experimental results — Optimal model and data size
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Figure 7: Optimal model size (left) and number of examples (right) for a given level of compute for
linear evaluation on CIFAR100, on a log-log scale.



My opinion regarding this paper

Strengths: What were the real reviews?
- Informative background discussion
- Comparison of optimal dataset size vs optimal model size for 4 reviewers
fixed compute 1 strong accept (rating 8)
- Nicely explained the effect of pretraining and role of 2 weak accepts (rating 6)
augmentation 1 borderline reject (rating 4)

- Using test time augmentation to explain the model’s limitations

Weaknesses:

- Poor design of the figures.

- Unclear abbreviations on figures and tables. In my opinion,
figures and tables need to be self-sufficient in terms of
describing uncommon abbreviations/jargons.

What if | was a reviewer?
- | would recommend borderline and change to acceptance upon
addressing the weaknesses.



https://abdullah-mamun.com
a.mamun@asu.edu



