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Trustworthy AI in Digital 
Health
AI Trust in Digital Health

Ensuring trust in AI systems is essential for safe and ethical integration into 
high-stakes domains like digital health, addressing robustness, 
explainability, fairness, accountability, and privacy across the AI lifecycle.
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Introduction to Trustworthy AI
Core Principles

Trustworthy AI focuses on 
reliability, transparency, and 
accountability, emphasizing 
fairness, safety, and explainability 
to foster user confidence and 
ethical decision-making.

NIST Definition

NIST defines trustworthy AI 
through core characteristics 
including validity, reliability, safety, 
security, accountability, 
transparency, explainability, 
privacy, and fairness.

EU Guidelines

The High-Level Expert Group on AI 
outlined seven key requirements 
for trustworthy AI: human agency 
and oversight, technical 
robustness and safety, privacy 
and data governance, 
transparency, diversity and 
fairness, societal and 
environmental well-being, and 
accountability.

Robustness

Robustness ensures AI systems 
maintain reliable performance 
despite noisy inputs, sensor 
failures, or imbalanced datasets, 
as seen in multisensor activity 
recognition and disease 
diagnosis.

Explainability

Explainability is crucial for 
intelligent digital health systems 
to provide actionable feedback 
and model-based reasoning, 
enabling safer interventions and 
improved health outcomes 
through insights like 
counterfactual explanations.



Prior Reviews on Trustworthy AI

Comprehensiv
e Analysis

Reviews cover 
diverse 

requirements like 
fairness, 

explainability, 
accountability, and 
reliability, offering 
insights into risk 
mitigation and 

societal 
acceptance.

Ethical 
Foundations

Ethics are 
embedded in 

system design and 
development, 
focusing on 

practical 
applications like 

smart cities.

EU Principles 
and 

Trustworthy AI

Approaches are 
consolidated for 
trustworthy AI 
based on EU 

principles, 
providing a 

structured overview 
for reliable 
systems.

LLM Alignment 
and Trust

Reviews identify 
key dimensions of 
trustworthiness for 

LLMs, such as 
safety, fairness, 

and adherence to 
social norms, 
highlighting 
alignment 

challenges.

Transparency 
Gaps in 

Medical AI

Reviews reveal 
significant 

documentation 
gaps in medical AI 
products and call 
for stricter legal 
requirements to 

ensure safety and 
ethical compliance.



Branches of Trustworthy AI
Robustness

Robustness ensures reliable system 
performance under varied or adverse 
conditions, such as noisy inputs or 
missing data.

Explainability

Explainability makes AI models and 
their decisions understandable, 
allowing users to comprehend and 
trust model decisions.

Fairness

Fairness prevents biases and 
ensures equitable outcomes for all 
users.

Privacy

Privacy safeguards sensitive user data throughout the AI 
lifecycle, maintaining confidentiality and security.

Accountability

Accountability establishes mechanisms for responsibility 
and oversight, ensuring AI systems operate within ethical 
and legal boundaries.
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Challenges in Machine Learning System Phases
Problem Definition

Problem definition requires clear 
scope and ethical considerations.

Data Challenges

Data collection faces challenges 
from noisy data, noisy labels, and 
missing data.

Feature Selection

Feature selection necessitates 
managing multimodality to 
integrate heterogeneous data 
sources effectively.

Model Training

Model training confronts class 
imbalance, small datasets, and 
overfitting.

Model Evaluation

Model evaluation must address 
underfitting, overfitting, and 
performance gaps due to 
distribution shifts.

Inference Challenges

Inference faces challenges like 
missing channels/modalities and 
ensuring explainability.



Designing Robust ML Models
Robustness in AI Systems

Robustness is fundamental for AI, ensuring reliable performance across diverse conditions.

Handling Data Imperfections

Techniques like denoising autoencoders, convolutional networks, and fuzzy c-means clustering effectively handle noisy data, 
labels, and missing information.

Masked Autoencoders

Masked autoencoders use self-supervised learning to reconstruct missing data, enhancing model reliability.

Multimodal Integration & Imbalance

Robustness extends to multimodal data integration and class imbalance, addressed by multimodal deep learning and data 
balancing techniques.
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Application-Specific Trust 
Concerns

Domain-
Specific Trust

General principles 
of trustworthy AI 

are domain-
specific in 
healthcare, 

necessitating 
contextualized 

solutions.

Contextualizing 
Trust

Understanding 
trust concerns 

within each digital 
health area reveals 

nuances and 
practical 

challenges.

Building Trust 
in Practice

Building reliable AI 
systems requires 

addressing the 
unique demands 

of clinicians, 
patients, and 
regulators.



Trust Concerns Across Health Domains
Medical Imaging: Trust & 
Explainability

Deep learning models in medical 
imaging raise explainability and 
safety concerns due to their black-
box nature, addressed by techniques 
like saliency maps and Grad-CAM.

Cardiovascular Health: 
Signal Robustness

AI in cardiology, used for arrhythmia 
detection, relies on robust signal 
modeling and explainability for 
clinical workflow alignment.

Wearables: Data Challenges 
& Trust

Wearable data in health tracking 
presents challenges in sensor fidelity 
and noise, emphasizing online 
learning and anomaly detection for 
trustworthiness.

Metabolic Health: Variability 
& Privacy

Metabolic health applications 
integrating CGMs and wearables 
face challenges like user variability 
and missing data, mitigated by 
explainability and privacy-preserving 
learning.

Neonatal Health: High 
Stakes & Transparency

AI in pediatric and neonatal care 
requires crucial explainability due to 
data scarcity and high stakes, using 
what-if analysis and causal feature 
attribution.

Mental Health: Scarcity & 
Personalization

AI for mental health and addiction 
recovery emphasizes robust learning 
under label scarcity, personalization, 
and clinically relevant explanations 
using self-supervised learning.



1 2

AI in Critical Care & Public Health
Intensive Care: Prediction & Trust

AI in ICUs supports early prediction of sepsis and patient 
deterioration, requiring strong generalization and low 
false alarm rates for clinical trust.

Public Health: Surveillance & Ethics

Public health AI aids disease surveillance and epidemic 
forecasting, emphasizing responsible AI frameworks for 
fairness, transparency, and ethical risk management.



Label Scarcity and Data-Efficient Learning

Prioritizing Robustness & 
Explainability

Trustworthy AI in digital health 
prioritizes robust and explainable 
systems, crucial for addressing 

unique healthcare challenges like 
label scarcity.

CUDLE Framework for Label 
Scarcity

The CUDLE framework leverages 
self-supervised learning for accurate 

health behavior detection with 
minimal labels, achieving higher 

accuracy than traditional methods.

Clinical Speech AI 
Development

Clinical speech AI must integrate 
insights from speech science, 

explainable models, and robust 
validation frameworks to mitigate 

limited data and overfitting.



Forecasting and Personalized Interventions
Ensemble Models in Public 
Health

Probabilistic forecasting in public 
health, especially during the COVID-
19 pandemic, demonstrated that 
ensemble models consistently 
outperformed individual models in 
mortality rate forecasting.

Collaborative Modeling 
Imperative

This highlights the importance of 
active coordination between public 
health agencies, academia, and 
industry for reliable modeling under 
real-world constraints.

Personalized Interventions 
Efficacy

Personalized digital health 
interventions, such as smartphone 
and text-message-based systems for 
managing type 2 diabetes, 
significantly improved glycemic 
control compared to website-based 
interventions.



Self-Supervised Learning and Cross-Domain 
Generalization
Transformative Role of Self-Supervised Learning

Self-supervised learning transforms medical AI by enabling models to learn from large-scale unannotated data across diverse 
modalities like medical images and bioelectrical signals.

Addressing Data Challenges for Scalability

These methods address challenges like limited annotated datasets and biased data collection, facilitating the development of 
scalable and generalizable AI systems.

Enhancing Trustworthiness via Sensor Redundancy

Inherent sensor redundancies have been exploited to enhance anomaly detection in sensor-based systems, improving 
trustworthiness and robustness in digital health applications.
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Robustness, Utility, and Oversight

Robust and Explainable Systems

Work in AIMEN and medication adherence forecasting 
focuses on building robust, explainable systems to improve 

reliability and clinical utility in neonatal health and 
treatment adherence.

AI Co-Scientist System

Google's Co-Scientist system introduces a multi-agent 
framework for automated scientific discovery with human 

oversight.

Transparency and Accountability

This system exemplifies transparency and accountability 
through debate-style evaluation and citation-based 

reasoning.

Human Oversight and Domain Knowledge

The inclusion of scientists ensures explainability and 
alignment with domain knowledge, supporting responsible 

deployment in high-stakes fields.



Explainability in Machine 
Learning
Goal of Explainable AI

Explainable AI (XAI) methods aim to make complex models transparent, 
bridging the gap between high-performing opaque models and responsible 
real-world deployment.

Range of Techniques

Techniques range from feature importance scores to counterfactual 
explanations, crucial in critical fields like healthcare.



Explainable AI Methods
Feature Importance: Shapley & SHAP

Shapley values and SHAP quantify feature contribution to 
predictions, ensuring fairness and consistency.

Counterfactual Explanations: Actionable 
Insights

Counterfactual explanations show how altering input 
features changes outcomes, providing actionable insights 
for decision-making.

Practical Tools: DiCE & NICE

Tools like DiCE and NICE generate diverse, intuitive, and 
transparent counterfactuals, enhancing explainability and 
usability.

Applications in Healthcare

These methods have been applied in critical domains like 
neonatal health and multimodal hyperglycemia prediction, 
improving interpretability and safety.
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Counterfactual Explanations 
in XAI

Semi-Factual 
Explanations

Semi-factual 
explanations 

highlight input 
changes that do 

not alter a model's 
output, offering 

insights into 
prediction stability 

and enhancing 
trust.

Robust 
Counterfactua

ls for GNNs

Robust 
counterfactual 

explanations for 
Graph Neural 

Networks (GNNs) 
ensure stability in 

noisy 
environments by 

identifying 
influential 

subgraphs.

NICE for 
Tabular Data

NICE generates 
counterfactuals for 

tabular data, 
optimizing for 

sparsity, proximity, 
and plausibility to 
ensure efficient 
and applicable 
explanations.
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Benchmarking & 
Frameworks for 
Counterfactuals

Benchmarking 
Counterfactuals

Benchmarking efforts 
categorize counterfactual 

explanation techniques based 
on stability, diversity, and 

actionability, highlighting trade-
offs.

Balancing Properties for 
Actionability

Analysis calls for methods that 
balance multiple desirable 

properties for actionable and 
efficient explanations.



Applications of Counterfactual Explanations in 
Healthcare

Role in Healthcare

Counterfactual explanations are vital 
in healthcare systems like AIMEN 
and GlucoLens, providing actionable 
insights for clinicians and patients.

Enhancing Interpretability 
and Trust

They demonstrate effects of 
interventions or behavioral changes, 
improving interpretability and 
enhancing user trust.

Alignment with AI 
Transparency

Counterfactuals align with the need 
for transparent and user-friendly AI in 
high-stakes domains.



Local Interpretable Model-agnostic Explanations

LIME provides explanations for predictions by fitting interpretable models 
locally, perturbing input data to create a neighborhood and observing black-
box model behavior.

Feature Contribution & Flexibility

It highlights individual feature contributions and is flexible across any 
machine learning model.
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Shapley Values
Cooperative Game Theory Basis

Shapley values, from cooperative game theory, fairly 
distribute total value among contributors (features) by 
calculating marginal contribution averaged over all 
permutations.

Theoretical Foundation for SHAP

They form the theoretical basis for tools like SHAP, 
ensuring fairness and consistency in feature attribution, 
despite being computationally intensive.
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GradCAM (Gradient-
weighted Class Activation 
Mapping)

Visual Explanations for 
CNNs

GradCAM generates visual 
explanations for CNNs by 

highlighting important regions 
in input images using gradients 

of the model's output with 
respect to feature maps.

Intuitive Visual 
Interpretation

Heatmaps overlay input images 
to show areas influencing 
model decisions, providing 

intuitive interpretation for visual 
data.
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Integrated Gradients
Axiomatic Attribution

Integrated Gradients is an attribution technique that 
explains deep neural network predictions in a 
theoretically grounded manner.

Feature Importance Estimation

It estimates feature importance by accumulating 
gradients along a straight-line path from a baseline to 
the actual input.

Stable and Interpretable Explanations

The resulting attribution map highlights influential input 
features, offering stable and interpretable explanations.

Value in Sensitive Domains

It is valuable in sensitive domains like medical imaging, 
requiring transparent decision-making.





NICE (Nearest Instance Counterfactual 
Explanations)

Nearest Instance 
Counterfactuals

NICE generates counterfactual 
explanations by identifying the 
nearest instance in the feature space 
that results in a different prediction.

Distance Minimization

It minimizes distance while ensuring 
the counterfactual belongs to a 
different class.

Actionable and Realistic 
Explanations

This approach ensures interpretable, 
realistic, and actionable explanations 
aligned with data distribution.



DiCE (Diverse Counterfactual Explanations)

Minimal Feature Changes

DiCE generates counterfactual 
explanations to show how minimal 

changes to input features can alter a 
model's prediction.

Diverse Alternatives for 
Users

It creates diverse explanations, 
offering multiple plausible 

alternatives for user exploration.

Suitability for Sensitive 
Domains

DiCE balances proximity, diversity, 
and feasibility, making it suitable for 
sensitive domains like finance and 
healthcare where interpretability is 

crucial.



CFNOW
Two-Step 
Optimization

CFNOW uses a 
two-step 
optimization: CF 
search finds an 
initial solution for 
classification 
change, then CF 
improvement 
refines it by 
minimizing 
distance.

Flexible 
Approach

It supports greedy 
and random 
approaches, 
prioritizing speed 
or refinement for 
plausibility.

Versatile Data 
Handling

CFNOW processes 
diverse data types 
(tabular, image, 
text) for binary and 
multiclass tasks, 
offering flexible 
and adaptable 
counterfactual 
explanations.
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Trustworthy AI in the Era of LLMs
LLMs Reshaping Domains

LLMs like ChatGPT are reshaping 
research, education, and medicine 
by enhancing information access 
and decision-making.

Multimodal and 
Multilingual LLMs

Advancements like Llama 3 show 
strides in multilingual support, 
coding, and multimodal 
functionalities, enabling diverse 
applications.

RAG for Enhanced 
Accuracy

Retrieval-augmented generation 
(RAG) combines parametric and 
non-parametric memories to 
enhance specificity and factual 
accuracy in language generation.

Advanced Reasoning 
Models

Reasoning models like DeepSeek-
R1 refine logical inference, while 
chain-of-thought prompting 
reveals untapped cognitive 
potential.

Transparency in LLMs

Transparency in LLMs involves 
understanding how models arrive 
at conclusions, a challenge given 
their complex nature.

Fairness and Bias 
Mitigation

Fairness in LLMs requires 
detecting and mitigating biases to 
ensure equitable outcomes, 
especially in sensitive domains 
like healthcare.
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Metrics of Evaluation
Importance of Evaluation

Evaluating trustworthy AI methods ensures utility, 
reliability, and alignment with user needs.

Assessing Explanation Quality

Effective metrics assess accuracy, simplicity, and 
robustness of explanations, providing a comprehensive 
understanding of strengths and limitations.
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Trust Metrics

Quantifying 
Trust 

Influence

The trust 
coefficient 

quantifies how 
human decisions 
are influenced by 

ML model 
predictions relative 

to ground truth 
labels.

Interpreting 
Trust 

Coefficient

A coefficient 
greater than one 
suggests over-
reliance, while a 
value below one 

indicates 
skepticism.

Survey-Based 
Trust 

Assessment

Survey-based 
assessments 

provide a validated 
framework for 

measuring public 
trust and 

openness toward 
AI in healthcare.



Conclusion
Foundational Properties

Trustworthy AI in digital health 
requires addressing robustness and 
explainability as foundational 
properties.

Synthesized Developments

The review synthesizes recent 
developments in algorithmic 
innovations, evaluation frameworks, 
and practical deployment challenges.

Robustness in Clinical 
Settings

Robustness in clinical settings must 
account for data distribution shifts, 
sensor noise, and adversarial 
scenarios.

Explainability for Clinicians

Explainability must go beyond model 
transparency to support clinician 
understanding, justification, and 
decision-making.

Verifiable Trustworthiness

Trustworthiness is a composite of 
verifiable properties that must be 
operationalized and measured 
systematically.

Societal Imperative

Advancing trustworthy AI in digital 
health is not only a technical 
challenge but a societal imperative.
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